Files
page-assist/py_server/handlers/chat.py

83 lines
2.8 KiB
Python
Raw Normal View History

2023-04-11 15:19:39 +05:30
from models import ChatBody
from bs4 import BeautifulSoup
from langchain.docstore.document import Document as LDocument
from langchain.vectorstores.faiss import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
2023-04-11 21:07:42 +05:30
from langchain.vectorstores import Chroma
2023-04-11 15:19:39 +05:30
async def chat_extension_handler(body: ChatBody):
try:
soup = BeautifulSoup(body.html, 'lxml')
iframe = soup.find('iframe', id='pageassist-iframe')
if iframe:
iframe.decompose()
div = soup.find('div', id='pageassist-icon')
if div:
div.decompose()
div = soup.find('div', id='__plasmo-loading__')
if div:
div.decompose()
text = soup.get_text()
result = [LDocument(page_content=text, metadata={"source": "test"})]
token_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
doc = token_splitter.split_documents(result)
print(f'Number of documents: {len(doc)}')
2023-04-11 21:07:42 +05:30
vectorstore = Chroma.from_documents(doc, OpenAIEmbeddings())
2023-04-11 15:19:39 +05:30
messages = [
2023-04-15 15:59:10 +05:30
SystemMessagePromptTemplate.from_template("""You are PageAssist bot. Use the following pieces of context from this webpage to answer the question from the user.
2023-04-14 20:27:32 +05:30
If you don't know the answer, just say you don't know. DO NOT try to make up an answer.
2023-04-15 15:59:10 +05:30
If user want recommendation, helping based on the context then help the user.
2023-04-14 20:27:32 +05:30
If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context. Helpful answer in markdown:
2023-04-11 15:19:39 +05:30
-----------------
{context}
"""),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
2023-04-11 21:07:42 +05:30
chat = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0, model_name="gpt-3.5-turbo"), vectorstore.as_retriever(search_kwargs={"k": 1}), return_source_documents=True, qa_prompt=prompt,)
2023-04-11 15:19:39 +05:30
history = [(d["human_message"], d["bot_response"]) for d in body.history]
response = chat({
"question": body.user_message,
"chat_history": history
})
answer = response["answer"]
answer = answer[answer.find(":")+1:].strip()
return {
"bot_response": answer,
"human_message": body.user_message,
}
except Exception as e:
print(e)
return {
"bot_response": "Something went wrong please try again later",
"human_message": body.user_message,
}